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Avalanches, transport, and local equilibrium in self-organized criticality

Afshin Montakhab and J. M. Carlson
Department of Physics, University of California, Santa Barbara, California 93106-9530

~Received 19 September 1997; revised manuscript received 7 August 1998!

We obtain numerical evidence of local equilibrium in a family of sandpile models which exhibit self-
organized criticality~SOC!, by comparing them with closed systems which exhibit dynamical depinning
transitions. In particular, we construct a mapping between the open and closed system avalanche size distri-
butions which accounts for finite size fluctuations in the density and the critical point. Our results suggest a
generalization of the singular diffusion description of SOC which transcends the point where this description
was previously seen to break down.@S1063-651X~98!15811-7#

PACS number~s!: 64.60.Ht, 02.50.2r, 05.40.1j, 05.60.1w
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I. INTRODUCTION

Local equilibrium is a useful property which leads to pr
dictions for the nonequilibrium dynamics of open driven sy
tems based on known aspects of their closed equilibr
analogs@1,2#. A driven system exhibits local equilibrium
when its local properties are indistinguishable from those
an equilibrium system at the same density, in spite of the
that the global behaviors may be quite different. It is n
particularly unusual to find that local equilibrium applies
systems which exhibit a simple uniform flow. However, it
surprising to find equilibrium analogs for systems which e
hibits large scale emergent phenomena.

Certain driven threshold systems have proven to be s
cessful testbeds for applying local equilibrium in cas
which exhibit complex phenomena over a broad range
scales@3–9#. In particular, analogies between self-organiz
criticality ~SOC! @10# and the more traditional criticality
which underlies dynamical phase transitions@11,12# have
shown that local equilibrium can apply to systems in t
neighborhood of a critical point. This analogy underlies t
singular diffusion description of transport in certain SO
systems introduced by Carlson and co-workers@13–17#. In
this analysis, SOC models are studied first asclosedsystems,
for which there is a well-defined conserved quantity. In t
hydrodynamic limit these systems are shown to satisfy de
ministic diffusion equations in which the diffusion coeffi
cient depends on the local value of the conserved den
and diverges as the density approaches a critical point.
key success of the singular diffusion description is obtain
by applying it to theopensystems that exhibit SOC, where
is found that with appropriate boundary conditions the dif
sion limit correctly predicts the rate at which the avera
density approaches the critical value as the system size
verges.

More recently, it was shown that the diffusion descripti
can break down when the open system is driven sufficie
hard @18#. In this scenario, as the driving rate is increas
fluctuations cause the density of a macroscopic portion of
system to exceed the critical value. Thisa priori rules out the
possibility of applying the closed system thermodynamic s
gular diffusion limit to the open finite system, since the d
fusion coefficient in this limit is undefined for densitie
greater than the critical density. Is this breakdown an indi
PRE 581063-651X/98/58~5!/5608~12!/$15.00
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tion that the open system no longer behaves similarly to
closed system?

In this paper we present evidence that the analogy
tween closed and open systems can survive beyond the p
where the diffusion limit has failed. Thus, in the systems
consider, local equilibrium is found to be extremely robust
it survives in spite of systemwide fluctuations in the neig
borhood of a thermodynamic singularity. Based on resu
we obtain for avalanche distributions in the closed and o
systems, we suggest an extended relationship between r
ation on the closed system and transport on the open sys
The key point is to compare the open driven system to
appropriate ensemble of closed systems of the same fi
size which lie below their sample dependent depinning d
sities, and are distributed in density according to the fluct
tions of the open driven system. The singularities associa
with the critical density arise in the thermodynamic limit an
are avoided by focusing on a selected subset of finite s
tems.

The remainder of this paper is organized as follows.
Sec. II we describe the open and closed systems that we
studied. In Sec. III we provide a brief review of depinnin
transitions and singular diffusions, highlighting the featur
which are particularly relevant for finite systems. In Sec.
we define a necessary test for local equilibrium in terms o
mapping between event size distributions on the open sys
and the corresponding distributions on the closed syst
and verify the mapping numerically in regimes where t
singular diffusion limit holds and fails. In Sec. V we discu
the implications of local equilibrium for a more general r
lationship between relaxation on the closed system and tr
port on the open system which extends past the point wh
the deterministic diffusion limit fails. In Sec. VI we conclud
by discussing why we expect local equilibrium is so robu
in the class of models we have considered.

II. DEFINITION OF THE MODELS

All of the models we consider can be thought of as var
tions of the Bak, Tang, and Wiesenfeld~BTW! sandpile
model @10#, in which there is a ‘‘mass’’mi associated with
each site on a two-dimensionalN3N integer lattice. All the
models share the same toppling rule, and differ only in
5608 © 1998 The American Physical Society
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boundary conditions and the manner in which avalanches
initiated.

A. Toppling rule

The sitei ‘‘topples’’ when mi exceeds a specified thres
old valuemc . As a resultmi is reduced by a fixed amoun
which is subsequently redistributed among nearest neigh
sitesmnn. Without loss of generality we takemc54, and the
following toppling rule. If

mi.mc

then

mi→mi24, mnn→mnn11. ~1!

The process in Eq.~1! is iterated for each of themnn that may
have become unstable, until all of the sites on the lattice
below threshold. The cumulative result of an initial instab
ity is referred to as an avalanche, and the avalanche siz
the number of sites that topple.

B. Boundary conditions: open vs closed systems

Sandpile models are typically defined with open bound
conditions. The SOC steady state is reached when, on a
age, addition of mass balances loss of mass at the boun
However, it is also possible to define closed versions of th
systems in which the boundary conditions are periodic.
this case, when edge sites topple, one or more grains
transferred to an edge on the opposite side of the system
a closed system, the toppling rule preserves the density,
there is a critical density at which the system exhibits a th
modynamically sharp phase transition between pinned
sliding states. As several authors have previously no
@12,19#, there is a direct analogy between the closed sys
and a space-time discretization of the Fukyama-Lee-R
model @20# for charge density waves~CDW’s!.

C. Driving mechanisms

We consider three driving mechanisms~equivalently, ava-
lanche initiation rules!. We refer to the first two as stirring
mechanisms, because locally they rearrange the grains b
not result in a net change in the mass. In contrast, the t
mechanism results in a net addition. The critical expone
characterizing the avalanche distributions are different
each case. This leads to different exponents characteri
the singular diffusion coefficient. See Table I.

1. Thermal driving

The thermal driving mechanism was introduced by My
and Sethna@21# in the context of CDW’s, and corresponds
initiating avalanches by randomly toppling subthresh
sites. That is, a sitei on the lattice is chosen at random and
made to topple according to the usual toppling rule ev
though it is initially below threshold:

mi→mi24,
~2!

mnn→mnn11.
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If any of the neighboring sites is above threshold, the to
pling rule Eq.~1! is iterated until all sites are stable at whic
point another thermal kick@Eq. ~2!# takes place.

2. Exchange driving

The exchange driving mechanism was introduced
Carlsonet al. @18# in the context of SOC systems, and n
merical results were obtained both on open and closed
tems. Exchange driving corresponds to selecting a sitei at
random, removing one grain from that site, and deposit
the grain on a randomly selected nearest neighbor ofi:

mi→mi21
mj→mj11J for a random neighborj of i . ~3!

If mj is above threshold, the toppling rule@Eq. ~1!# is iterated
until all sites are below threshold.

3. Ramping

Ramping is the most commonly considered drivi
mechanism for both CDW’s and SOC. The original BT
sandpile model is driven this way by adding one grain a
time to a randomly chosen sitei:

mi→mi11. ~4!

If that site is above threshold, the toppling rule@Eq. ~1!# is
iterated until the system is completely stable. Of the th
driving mechanisms, ramping is the only case in which m
is added to the system.

4. Mixed cases

To obtain nontrivial results for thermal or exchange dr
ing of open systems we must include some probability
addition ~i.e., ramping! to provide a net flux. We define th
exponentdA ~for dimension of addition! so that on each ini-
tiation step of the automaton the ramping rule is invok
with probability

Padd5NdA/Nd, ~5!

while a stirring event~either thermal or exchange toppling!
takes place with probability

Pstir512~NdA/Nd!. ~6!

TABLE I. Closed systems: The thermal, exchange, and ramp
mechanisms described in Sec. II lead to different correlation len
exponents@Eq. ~9!#, and different diffusion singularities@Eq. ~8!#,
as reported in Refs.@12,18,21# and Sec. V.

Driving
mechanism

Initiation
rule

Correlation
exponent

Diffusion
singularity

Thermal mi→mi24 n50.5 f51.7

mnn→mnn11

Exchange mi→mi21 n50.75 f52.3

mj→ mj11

Ramping mi→ mi11 n51
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Therefore,dA5d52 corresponds to pure ramping. Furthe
more, by varyingdA we vary the flux, and it has been show
previously that whendA is sufficiently large the singular dif
fusion description breaks down@18#.

III. DIFFUSION LIMITS, DEPINNING TRANSITIONS,
AND LOCAL EQUILIBRIUM

Local equilibrium implies the existence of a relationsh
between relaxation on the closed system and transport on
open system. In this section we highlight several establis
features associated with transport and relaxation in the m
els defined in Sec. II. Typically, both relaxation and transp
are analyzed in the continuum limit in terms of determinis
quantities—relaxation rates or diffusion coefficients. Ho
ever, the continuum limits are subtle in the models we c
sider because both relaxation and transport take place in
neighborhood of a critical point. Here we give special atte
tion to finite size effects. Accounting properly for the fini
system size is at the heart of the mapping we construc
Sec. IV.

Previous work by Carlsonet al. @13# exploited the anal-
ogy between relaxation and transport in the developmen
the singular diffusion description of SOC systems. Th
studied the continuum limits of a class of sandpile mod
which were found to satisfy deterministic singular diffusio
equations. These equations describe the evolution of a
served densityr, which is the continuum version of the dis
crete mass variablemi . As N→`, the automata map ont
deterministic diffusion equations which describe the net
fect of many ~infinite in the limit! avalanches, involving
many particles and many sites.

The singular diffusion equations are of the general for

]r

]t
5“•@D~r!“r#, ~7!

where the diffusion coefficient depends on the local den
and exhibits a singularity at a critical densityrc ,

D~r!;
1

~rc2r!f . ~8!

In the closed system the critical density is associated wi
depinning transition which has been studied in the contex
CDW’s @11,12,22,23#. When the system is prepared wi
densityr>rc in the thermodynamic limit with probability 1
there will be an infinite avalanche which propagates forev

The diffusion coefficient is only defined forr,rc ~the
microscopic time scale which enters into the continuum lim
is the avalanche initiation rate, while in the depinned st
this time scale is undefined since an infinite avalanche be
in the initial state and never stops!. A diverging diffusion
coefficient reflects the fact that typical transition lengt
~event sizes! are diverging as the density approaches
critical value rc . Indeed, numerical studies of event si
distributions on closed systems@12,18,21,24# reveal a char-
acteristic length scale which diverges at the transition
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j~r!;
1

~rc2r!n . ~9!

Here j~r! measures how far an instability will typically
propagate before the system relaxes to a metastable sta

The singular diffusion coefficient can be evaluated n
merically on the closed system at fixed densityr,rc by
monitoring the relaxation of a nonequilibrium density profi
to the uniform equilibrium state~see Sec. V!. However, the
key success of this description comes fromassumingthat the
same equation describes transport on the open system su
to the boundary conditions associated with the external d
ing mechanism and the dissipation. For SOC systems
finite system size always remains relevant, and arises in c
junction with Eq.~7! via the rescaled addition rate@Eq. ~5!#,
which is seen to increase with system size@13#. Ultimately
this leads to the prediction that the steady state density
proaches the singularity as the system size diverges.

The rate of convergence is obtained self consistently
assuming the average densityr̄ is of the form

rc2 r̄;
1

Nb . ~10!

The exponentb is determined by balancing the time sca
associated with addition,

tA;
1

NdANb2d , ~11!

with that for diffusive transport,

tD;N22bf. ~12!

HeretA is the inverse rate at which the mass is increased
an amount comparable to the distance from the singula
andtD is the inverse relaxation rate of a density perturbat
in Eq. ~7!, obtained by reintroducing the explicit system si
dependence of the spatial and temporal variables. A ste
state is obtained for the density at which these time scales
equal, yielding the exponent

b5
22d1dA

f21
~13!

as the self-consistent solution in Eq.~10!. This implies that
the rate of convergence to the critical density with syst
size N increases as the addition rate exponentdA is in-
creased.

Because the density approaches a singularity asN→`,
application of the continuum description in Eq.~7! to an
open driven system can fail. In previous work on applyi
singular diffusions to SOC models, the breakdown of t
diffusion limit was identified with a particular value of th
driving rate exponentdA @Eqs.~5! and~6!# at which fluctua-
tions associated with the finite size of the open system le
the density to exceed the critical density in macroscopic
mains.

We characterize fluctuations in the open system den
distribution by the exponenta, such that
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s[@^r2&2^r&2#1/2;N2a. ~14!

In the case of the BTW model, the fluctuations obey
central limit theorem~consistent with the fact that the mas
mass correlation length does not diverge atrc in this sys-
tem!, so thata5d/2. Density fluctuations exceed the critic
point whena<b, so that the thermodynamic diffusion lim
is no longer self-consistent in that regime.

In this paper we extend the analogy between open
closed systems by comparing the open system to a fi
closed system of the same size, rather than using results
tained for a continuum limit on the closed system as w
done before. The key point is to account for both the den
fluctuations of the finite open system and the critical po
fluctuations of the ensemble of finite closed systems@12,24#.
If both kinds of fluctuations are small compared to the d
tance between the mean open system density and the
modynamic singularity, then predictions based on singu
diffusion in theN→` limit survive. In this case, it is always
possible to find a finite system which is large enough that
effects due to fluctuations can be made smaller than a sp
fied tolerance.

Alternately, to describe systems which approach the c
cal density faster than the fluctuations decay, it is neces
to account for the possibility of overlap between dens
fluctuations on the open system~characterized by the expo
nenta as described above! and the critical point fluctuations
of the ensemble of closed systems. An ensemble of clo
systems~involving different realizations of the randomness!,
is characterized by a distribution of critical densitiesrc

s . The
width of this distribution is characterized by a finite si
scaling exponent@25#

s8[@^~rc
s!2&2^rc

s&2#1/2;N21/nFS. ~15!

In the systems we consider these fluctuations obey the
tral limit theoremnFS5d/2 @11#. This is the same scaling a
that obtained for the open system density fluctuations,
1/nFS5a, so that as the system size diverges (N→`), the
fluctuations in both the open system density and closed
tem critical point converge to zero at the same rate, wh
preserves the criterionb,a for which fluctuations are irrel-
evant and the thermodynamic singular diffusion limit appl
to the open system. In contrast, forb>a fluctuations become
dominant.

The two different scenarios are illustrated in Fig. 1, whe
we plot various distributions for a 64364 exchange model
The curve on the right side of each part~a! and ~b! is the
critical point distribution on the closed system,Fc

N(rc
s). This

is measured by ramping from the same set of initial con
tions ~e.g.,mi50, ; i ! and recording the value of the densi
at which an infinite avalanche~i.e., a sliding state! occurs.
On the left side of Fig. 1~a! we plot the middle quarter ope
system density distributionGo

N(r) for dA51.0 with ex-
change stirring. Results based on density estimates m
from the middle quarter of the system sometimes yield be
results than those obtained using the density averaged
the full system, because restricting measurements to
middle quarter avoids edge effects. In this regimeb,a, so
that fluctuations decay more rapidly than the density c
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verges to the critical point, and thus the singular diffusi
description applies. In Fig. 1~b!, we plot the density for both
the middle quarter of the system as well as the full system
the BTW model withdA52.0. In this regimeb.a51/nFS,
and the distributions already overlap forN564, signaling the
breakdown of the deterministic diffusion limit. The midd
quarter density distribution overlaps more strongly with t
distribution of critical points than the corresponding distrib
tion for the whole system. This occurs because the mea
the middle quarter distribution is slightly higher~it does not
include the low density boundary layers!, and the middle
quarter corresponds to a smaller subsystem with an intri
cally greater variance@26#.

IV. AVALANCHE DISTRIBUTIONS

In this section we propose a mapping between the o
and closed systems which extends beyond the point wh
fluctuations destroy the deterministic diffusion limit. We di
cuss our map in the context of the avalanche distributio

FIG. 1. Distributions of the open system densitiesGo
N(r), and

closed system depinning threshold densitiesFc
N(rc

s), for a 64364
exchange model. In~a!, dA51.0, and fluctuations are small com
pared to the separation between the mean density and the m
depinning threshold. In this case we have plotted the middle qua
density distribution. In~b!, dA52.0, and the mean density is muc
closer to the mean depinning threshold so that the distributi
overlap. Both middle quarter and full system densities distributio
are included for comparison.
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However, the analogy we make is easily generalized and
also been tested for other quantities@27#. The mapping is a
necessary, but not sufficient, condition to verify local eq
librium. A more stringent test would involve a detailed che
of all correlation functions. However, we are ultimately mo
interested in whether the aggregate transport on the o
system has an analogy in closed system dynamics, ra
than in details of the microscopic states. A check of
mapping between avalanche distributions provides fa
convincing evidence that the transport properties will
similar.

A. Open system compared to an ensemble of closed systems

A specific scaling form of the avalanche distribution
the closed system has been conjectured and verified num
cally in previous studies@12,18,24#. Near the critical point
we write

Pc
N~n,r!;

1

na g~n/jd!, ~16!

where Pc
N(n,r) is the equilibrium probability of an even

involving n sites at densityr on a system of sizeN, andg(x)
is a scaling function. The subscript ‘‘c’’ denotes a closed
system. This relation defines the exponenta. The correlation
length is given by Eq.~9!, and provides the~typically expo-
nential! cutoff in the event size distribution.

The steady state density of the open system exhibits
tral limit fluctuations about a mean densityr̄, which also
scales withN. We write the probability of the open syste
having a densityr as

Go
N~r!5

1

A2ps
exp@2~r2 r̄ !2/2s2#. ~17!

Here the subscript ‘‘o’’ denotes open system and the supe
scriptN reminds us of the implicit system size dependence
the meanr̄ and the variances. A similar expression charac
terizes the Gaussian distribution of critical densitiesrc

s on
the finite closed system

Fc
N~rc

s!5
1

A2ps8
exp@2~rc

s2rc!
2/2s82#, ~18!

wheres8;N21/nFS with nFS>2/d.
We now construct the mapping for the event size dis

bution on the open systemPo
N(n) in terms ofPc

N(r,n). The
key point is to consider the open system as an ensemb
closed systems which are weighted according to their de
ties and their finite size, and restricted to be the subse
systems below their sample dependent critical points. To
end, we integrate the closed system event size distribu
Pc

N(rn) over the distribution of densities of the open syste
Go

N(r), and perform an ensemble average by integrat
over the distribution of threshold densitiesFc

N(rc
s) for closed

systems of the same finite size:
as

-
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of
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n

g

Po
N~n!;E

2`

1`E
2`

rc
s

Pc
N~n,r!FGo

N~r!Fc
N~rc

s!

I Gdr drc
s .

~19!

The left hand side is simply the open system event size
tribution, while the right hand side represents the distribut
we construct from an ensemble of closed systems. The in
integral performs an average over the~spatially varying! den-
sity of the open system for densities below the critical po
and the outer integral averages over the fluctuating crit

point. HereI is defined byI 5*
2`

rc
s

Go
N(r8)dr8, which nor-

malizes the open system density distribution subject to
restrictionr,rc

s . This normalization factor is needed sinc
the two probability functions may overlap significantly. W
integrate the densityr only up to the cutoffrc

s , because the
open boundary conditions prevent infinite events from occ
ring on the open system. Thus they must be excluded fr
the closed system ensemble. Finally, we note that this m
does not require the distributions to be of the specific for
given in Eqs.~16!–~18!, and is easily generalized to othe
measurable quantities by substituting the distributions of
terest forPc

N(r,n) andPo
N(r) in Eq. ~19!.

Finally, we consider Eq.~19! in the N→` limit for the
specific distributions given in Eqs.~16!–~18!. While Eq.~19!
does not depend on the diffusion limit, there are two diffe
ent regimes which coincide with the conditions for which t
limit holds and fails. In the simplest case the density fluctu
tions do not overlap the critical point fluctuations. Therefo
without loss of generality, we replacerc

s by ` in the upper
limit of the integration so that asN diverges, the Gaussian
converge tod functions, resulting in the prediction

Po
N~n!;

1

na g~n/jd! ~a.b!, ~20!

where j;(rc2 r̄)2n. Note that the predicted open syste
event size distribution has an implicit system size dep
dence sincer̄ scales withN according to Eq.~10!. This de-
scribes the case when diffusion holds, and our mapping s
ply states that the event size distributions of the open
closed systems should have the same form having iden
exponentsn and a. On the other hand, when there is a
overlap between the open system density fluctuations
closed system critical point fluctuations, the hydrodynam
singular diffusion limit breaks down. Nonetheless, we c
carry out the integrals by elementary methods to obtain

Po
N~n!;

1

na ~a,b!. ~21!

In this case the maximum event saturates at the system
and the predicted power law is only limited by the finite si
of the system. The exponenta is again expected to be th
same on the open and closed systems.

B. Numerical results

We numerically verify Eq.~19!, in which the open SOC
system is compared to an ensemble of closed finite syst
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TABLE II. Open vs closed: The table summarizes the results obtained from finite size scaling collapses in Figs. 2–5. In each
avalanche distributions obtained for the open driven system collapse with the same exponents, like those used for the ensemble
finite systems defined according to the mapping in Eq.~19!. Thus the analogy between closed and open systems persists in the sodA

51.0), intermediate (dA51.5), and hard (dA52.0) driving regimes.

Driving
mechanism

Open system
driving rate

Avalanche
exponent

Correlation
exponent

Diffusion
applies

Open/closed
exponents agree

Thermal dA51.5 a51.16 n50.49 no~asN→`! yes
Exchange dA51 a51.41 n50.76 yes yes
Exchange dA51.5 a51.28 n50.79 no~asN→`! yes
Ramping dA52 a51.18 saturates no yes
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for the class of BTW sandpile models introduced in Sec.
We consider the open system as a function of driving ratedA
and system sizeN. In each case we initiate many avalanch
in the statistically stationary state to determine the avalan
distribution function Po

N(n) and the density distribution
function Go

N(r). Then for each closed system of sizeN we
begin withr5rmin50, and add one grain at a time. After th
grain is added, the system is stirred at fixed density for a l
time as we accumulate statistics forPc

N(r,n). After a large
number of events have taken place another grain is ad
and contributions toPc

N(r,n) for the next density incremen
are obtained. If at any point an infinite avalanche is enco
tered, the data for that specific density are discarded and
density is reset tormin for another sweep. In this manner w
approximate the process of integrating densities up to
critical densityrc

s . Finally, we combine the closed syste
events distributions obtained for different densities a
weight them according to the observed open system distr
tion of densitiesGo

N(r) to obtain an estimate for the righ
hand side of Eq.~19!.

We compare the distribution constructed from the e
semble of closed systems with the open system events
tribution in terms of the scaling exponents extracted from
finite size scaling collapse. Since the event sizen is rescaled
by the characteristic sizejd;(rc2 r̄)2nd;Nbnd, we may
replace Eq.~20! with Po

N(n);(1/na)g(n/Nbnd). Then defin-
ing z[n/Nbnd, the expected scaling takes the form

Po
N~n!Nabnd;

1

za ĝ~z!. ~22!

For a given driving rate (dA) and a stirring mechanism~ther-
mal or exchange!, we obtain the distributions for differen
system sizes and perform a finite size collapse. The bes
x-axis scaling exponent gives an estimate ofbnd, and the
best fit y-axis exponent gives an estimate forabnd. The
ratio of the two exponents yieldsa, andn can be calculated
given the estimate ofb which can be obtained by computin
the mean values of the density distributionsGo

N(r) as a func-
tion of N.

We consider three different regimes.Soft driving de-
scribes the case in whicha.b, and the deterministic singu
lar diffusion applies asN→`. Intermediate drivingde-
scribes the case in whichb is larger but comparable toa, and
the deterministic diffusion limit is expected to be invalid
the N→` limit. We introduce this as a separate case fro
the hard driving regime discussed below, because we
.
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that in the marginal case for the system sizes we can c
sider, the distributions do not overlap, and many of our n
merical results are still consistent with the singular diffusi
limit. Finally, we considerhard driving, which is exhibited
by the standard BTW model with pure ramping. In this r
gime b.a, and a significant overlap of density and critic
point fluctuations occurs even for small systems so tha
pure power law in the event size distribution is observ
The results are presented in summary form in Table II.

1. Soft driving: dA51.0

We first consider the open exchange model withdA
51.0, where fluctuations are small compared to the dista
from the singularity. A finite size scaling collapse of th
avalanche size distributions is shown in Fig. 2~a! for N
516, 32, 64, and 128. We compare this collapse with the
obtained from closed systems of the same sizes, where
closed system distribution is constructed according to
~19! from an ensemble of closed exchange models weigh
by the distribution of densities obtained for the middle qu
ter of the open system. Middle quarter densities are chose
order to avoid the edge effects associated with boundary
ers, as discussed in Ref.@13#. The result for the ensemble o
closed systems is shown in Fig. 2~b!, where an excellent
collapse is obtained for the same set of exponents as in
2~a!, indicating that the mapping between the open a
closed systems applies.

The ratio of the exponents yielding the best collapse p
duce the estimatea51.41. Computingb from our numerical
data on middle quarter densities yieldsb50.73 @in reason-
ably good agreement with the value predicted by singu
diffusions in Eq. ~13!#, and from this we obtainn50.76
which compares well with the value ofn obtained previously
for the closed system in Ref.@18#.

2. Intermediate driving: dA51.5

Next we consider the open exchange model w
dA51.5. In Fig. 3~a! we show a finite size scaling collapse
the open system avalanche distributions for system size
to 5123512. Figure 3~b! illustrates that the analogous close
system results@based again on Eq.~19!, with the middle
quarter density distribution from the open system# collapse
well with the same exponents. In this case, we have inclu
only the largest system sizes,N5128, 256, and 512, becaus
the smaller system sizes deviated from this collapse syst
atically with decreasing size. From this we obtaina51.28.
Computing the value ofb from the open system densities w
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obtain b51.135, in good agreement with Eq.~13!. This
yields n50.79, which is again consistent with the clos
system results.

We have also considered thermal stirring in the interm
diate regime. Figure 4~a! illustrates the finite size scalin
collapse of avalanche distributions on the open thermal
tem with dA51.5 andN516, 32, 64, 128, 256, and 512. I
Fig. 4~b! we show that the exponents used for the colla
also collapse the data obtained from the closed system
sembles. In this case we obtaina51.16. The open system
middle quarter mean densities yield the estimateb51.57,
which in turn givesn50.49, which is consistent with valu
of n50.5 previously obtained on the closed system@21#.

Thus we have established a correspondence betwee
open and closed systems fordA51.5, and obtained correla
tion length exponentsn which are consistent with previou
studies on the closed systems. However, there remai
subtle discrepancy between the data we have obtained,
the predictions we have made based on the dominanc
fluctuations that we anticipate for large enoughN with this
value of dA . Sincef52.3 for exchange stirring@18#, fluc-
tuations should dominate whendA>1.3. We have foundf
51.7 for thermal stirring~see Sec. V!, so fluctuations should
dominate whendA>0.7 in that case. However, the distribu

FIG. 2. Finite size scaling collapse of the avalanche distri
tions for exchange stirring withdA51.0. The same scaling expo
nents give a good collapse for both~a! the open system and~b! the
ensemble of closed systems. From this fit we obtaina51.41 and
n50.76.
-
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tions Go
N(r) andFc

N(rc
s) do not overlap for the system size

we can consider.
As shown earlier, the failure of the diffusion limit coin

cides with the emergence of pure power laws in the eve
distribution @Eq. ~21!#. In other words, we expect thatj
;N, i.e., the characteristic length scale should exhibit a
nite size crossover and saturate at the system size. In ge
the correlation length has a finite size scaling form

j;
1

~rc2r!n H„N~rc2r!n
…. ~23!

The scaling functionH(z) approaches a constant forz@1,
since in the thermodynamic limit the correlation length
independent of the system size. Alternately,H(z);z for z
<1 so that when (rc2r)2n'N the correlation length be
comes finite size limited,j;N. One cannot expect to extrac
the exponentn in this regime. As we shall see, this saturati
is observed whendA52.0. However, whendA51.5, even
though the singular diffusion limit is asymptotically expect
to fail, for the finite systems considered the correlati
length has not saturated. Instead, our data collapse indic
that over this range of system sizes the characteristic len
are decreasing slightly relative to the system size:j;N0.9 for

- FIG. 3. Finite size scaling collapse of the avalanche distri
tions for exchange stirring withdA51.5. The same scaling expo
nents give a good collapse for both~a! the open system and~b! the
ensemble of closed systems. From this fit we obtaina51.28 and
n50.79.
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exchange stirring in Fig. 3, andj;N0.78 for thermal stirring
in Fig. 4 ~the exponent describing the scaling ofj with N is
obtained by dividing the exponent for thex-axis data col-
lapse byd52!. We expect that this discrepancy results fro
the fact that we are not yet in the asymptotic regime for t
driving rate. Extrapolations of higher order fits of the n
merical results suggest that very large system sizes woul
required to achieve the predicted asymptotic results@18#.
This discrepancy does not invalidate our test for local eq
librium. While the values ofn obtained from these fits ar
consistent with closed system results, we suspect they
not represent asymptotic results.

3. Hard driving: dA52.0

Finally we considerdA52.0, where the system sustain
the maximum flux. The exchange and thermal models
indistinguishable in this case. In Fig. 5~a! we plot a finite size
scaling collapse of the open system avalanche distribut
which are described by pure power laws with sharp cutoff
the system size. Thex-axis scaling exponent isd52.0, indi-
cating thatj;N, as expected in this regime.

We construct the analogous distribution for the ensem
of closed systems initiating avalanches by ramping only. T
result of a finite size scaling collapse in this case is show

FIG. 4. Finite size scaling collapse of the avalanche distri
tions for thermal stirring withdA51.5. The same scaling exponen
give a good collapse for both~a! the open system and~b! the en-
semble of closed systems. From this fit we obtaina51.16 andn
50.49.
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Fig. 5~b! for the density distribution obtained from th
middle quarter of the open system. While the data do c
lapse with the same exponents here as in Fig. 5~a!, we obtain
better agreement for the scaling function when the integra
Eq. ~19! is based on the full system density, as shown in F
5~c!. The primary difference is in the tail of the distribution
The distribution constructed using the middle quarter den

-

FIG. 5. Finite size scaling collapse of avalanche distributions
the standard BTW model, i.e.,dA52.0. The same exponents give
good collapse for~a! the open system,~b! the ensemble of closed
systems weighted according to the middle quarter density distr
tion, and~c! the ensemble of closed systems weighted accordin
the full system density distribution. We obtaina51.175 from this
fit, and the saturation valuej;N associated with a power law dis
tribution.
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ties exhibits excess large events which we do not observ
the open system. This occurs because the mean of the m
quarter density distribution is essentially pinned atrc even
for relatively small systems. In addition, the middle quar
density distribution is based on a smaller subsystem size
the distribution obtained numerically for the closedN3N
system, so the variance is larger, which adds more weigh
the tail. For these reasons, in spite of the inclusion of
boundary layers~which are less significant because they a
sharper for hard driving!, the full system density distribution
gives a better fit.

Dividing they-axis scaling exponent by thex-axis scaling
exponent, we obtain the value ofa51.175, which is consis-
tent with that obtained from the CDW model by Narayan a
Middleton @28#. We observe thatb51.33, obtained from
whole system densities which combined withd52, yields
n50.75, consistent with the value reported by Tang and B
@23# for the same system, but inconsistent with the valuen
51.0 reported by Narayan and Middleton for the closed s
tem @12#. For the open system the characteristic lengthj
saturates when the exponent for thex-axis data collapse is
equal to 2.0, which is associated with the finite size limit
casej'N. Therefore, this method of estimatingn breaks
down on the open system.

V. CLOSED SYSTEM RELAXATION AND OPEN SYSTEM
TRANSPORT

Given the fact that the analogy between event size dis
butions on the open and closed systems persists beyon
point where our previous hydrodynamic description fails
is natural to ask whether a relationship between closed
tem relaxation and open system transport extends to this
gime. The existence of a mapping between open and clo
system event size distributions does nota priori imply that
this will be the case, particularly since relaxation involv
initializing the system in a nonequilibrium state.

Below, we suggest a generalization of the singular dif
sion description which incorporates a finite size scal
crossover when the hydrodynamic limit breaks down. In t
regime transport and relaxation are intrinsically noisy a
finite size limited. Our results remain somewhat specula
due to computational limitations which prevent us from co
sidering asymptotically large system sizes. Nonetheless
present numerical results for ensemble averages which
consistent with this picture.

The singular diffusion limit is described by Eq.~7!, where
the diffusion coefficient is given by Eq.~8!. The specific
scaling used to obtain a precise and deterministic continu
limit technically involves taking the system size to infini
on a closed system, as described in Sec. III. For any fi
system the evolution is stochastic, to first approximat
governed by a fluctuation equation described in Ref.@18#
which represents the leading order finite size correction
the deterministic diffusion limit.

The subtlety comes in applying the diffusion limit to ope
systems, where it predicts that the density approaches
singularity as the system size diverges. When hydrodyn
ics holds, the fluctuations still decrease rapidly compared
the rate at which the density approaches the singularity
that the system becomes more and more deterministic aN
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→`. When diffusion fails, the fluctuations are of the sam
order as the gap between the density of the finite system
the singularity, so that the fluctuations remain significant
all system sizes. It is in this sense that the system is int
sically noisy.

In order to motivate our description for the regime
which the hydrodynamic limit fails, it is useful to note that
some casesD(r) has also been expressed in terms of
characteristic length scalej~r! @Eq. ~9!# associated with the
cutoff in the event size distribution@29#:

D~r!;
1

~rc2r!f ;
j2

t
. ~24!

When time is defined conventionally, e.g., if individual to
plings occurred in a fixed, finite period of time, then w
would expect the characteristic time scalet to exhibit critical
slowing down in the neighborhood of therc . However, in
our case the clock is set by the stirring and/or addition ra
rather than the local toppling rule, and individual events
viewed as instantaneous regardless of their size. Co
quently, the time scalet is associated with the rate of chang
of the pinned configurations, which will also depend onr,
and is expected todecreasewhen approaching the singula
ity, since more sites change state as the typical avalan
size j increases. Borrowing the conventional notation fro
critical phenomena, we have

t;jz with z,0, ~25!

so that

D~r!;j~22z!. ~26!

In Sec. IV we saw that the regime where diffusion fails
associated with a finite size scaling crossover as describe
Eq. ~23!, such that for large enough densities on a giv
system size the largest events are limited not by the ther
dynamic cutoff but rather by the system sizej;N. The fact
that the diffusion coefficient can be expressed in terms oj,
andj exhibits finite size scaling, suggests a finite size scal
description of the diffusion coefficient:

DN~r!;
1

~rc2r!f K„N~rc2r!n
…. ~27!

When the system size is large compared to the event
cutoff, the argumentx of the scaling functionK(x) is large.
In this limit we expect K(x) to approach a constan
asymptotic value, so that the hydrodynamic result is retain
However, likej, the collective transport and relaxation d
namics which are characterized in terms ofDN(r) are also
expected to saturate at system size dependent average v
whenx<1. Thus we expectDN(r);Nu, where scaling sug-
gestsu5f/n522z. In this case,DN(r) represents an en
semble average coefficient. For a specific realization tra
port and relaxation remain intrinsically noisy and the critic
densityrc in Eq. ~27! is sample dependent.

To verify this numerically, we apply the same algorith
used previously to determine the diffusion singularity, b
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extend our analysis to the regime where the system size
comes relevant. In particular, we monitor the time dep
dence of the relaxation of small amplitude perturbations.
consider an ensemble of closed systems initialized so tha
average state is represented schematically by Fig. 6, w
depicts the hydrodynamic density as a step function. E
element of the ensemble is prepared in a random initial s
in which half of the system is at densityr̄2e, and the other
half is at densityr̄1e. We then equilibrate each half sep
rately at these offset densities, and combine the system
monitor the amplitudeA(t) of the offset for that sample as
function of time. Finally, we perform an ensemble average
^A(t)& to obtain the linear relaxation rate.

In the hydrodynamic case, the singular diffusion expon
f can be determined using this method. When the ini
offset is sufficiently small, we linearize Eq.~7! about the
uniform density stater(x)5 r̄ to obtain

A~ t !'A~0!exp„2l2D~ r̄ !t…, ~28!

where l is the eigenvalue of the~primary! Fourier mode
which we monitor. In order for the hydrodynamic limit t
apply, it is necessary for the largest events associated
the higher initial offset density to be small compared w
half the total system size. To stay within this limit, yet g
close enough to the singularity to see the asymptotic sca
of D(r), is numerically time consuming. While in principa
it should be possible to omit the ensemble average for
hydrodynamic case, in practice we cannot consider syst
which are large enough to be self-averaging. Instead we
erage over many initial states, as described above. Using
method we have obtained the diffusion exponentsf52.3 for
the exchange model andf51.7 for the thermal model a
reported in Table I.

To estimate the relaxation rate when the deterministic
fusion description fails, we extend our measurements on
sembles of closed, finite systems to higher densities, s
that the largest events span an appreciable fraction of
system. In this regime, critical point fluctuations are a

FIG. 6. Closed system relaxation rates are obtained numeric
from an ensemble of systems for which the average initial s
corresponds to a low amplitude step function in the density,
illustrated schematically here. In order to obtain the leading or
linear results, the amplitudee is taken to be small compared to th
distance from the singularity (rc2 r̄), and finite size effects be
come important whenjN( r̄2e) becomes comparable toN. The
step function describes a cross section of the density variation a
one axis of the two-dimensional lattice. The other direction is u
form.
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relevant, so ensemble averages area priori necessary in or-
der to identify the mean rate of decay. As for the clos
system event size distributions, here we restrict the ensem
to the subset of systems which remain below their sam
dependent critical points throughout the relaxation proce

The results are presented in Fig. 7 for the exchan
model. Similar results were obtained for the thermal mod
Our measurements were made for an initial density off
corresponding to 10% of the difference between the aver
density r̄ and the singularityrc'3.125. We find that the
decay remains roughly exponential, so that we can still e
mate the ensemble average rate of decay using a
squares fit to the form given in Eq.~28!. As illustrated, it
exhibits a crossover at values of the density which incre
with increasing system size, consistent with the finite s
scaling form proposed in Eq.~27!. For smaller densities the
diffusion coefficient is~roughly! independent of system siz
and of the expected form@Eq. ~8!#. However, as the density
approaches the singularity, the relaxation rate saturate
values and densities which increase with system size.

The approximately equal spacing of the saturation va
on the logarithmic scale for the three smaller system size
consistent with finite size limited form ofD(r);Nu, though
with so few data points it would be unreasonable to evalu
u numerically. At higher densities the events become
creasingly large and time consuming, and an increasing n
ber of realizations within the ensemble must be discar
because they exceed their~sample dependent! critical points.
This prevents us from exploring densities which were su
ciently large to obtain saturation in the relaxation rate
larger systems.

What are the implications for transport on the open s
tem? As discussed in Sec. III, when hydrodynamics holds
singular diffusion equation predicts the rate at which the d
sity approaches the singular point as the system size dive
according to Eq.~10!, where the exponentb in Eq. ~13! is
obtained by balancing the time scaletA associated with the
addition of new particles@Eq. ~11!#, and the time scale asso

lly
te
s
r

ng
-

FIG. 7. Relaxation rate as a function of density and system
for closed finite systems with exchange driving. Asr approaches
rc'3.125, the rate is initially proportional to the singular diffusio
coefficient @Eq. ~8!# with f'2.3. However, as the characterist
event sizej becomes comparable to the system size, the relaxa
rate saturates in a manner which scales with system size, cons
with Eq. ~27!.
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ciated with diffusive relaxationtD @Eq. ~12!#. As we gener-
alize our results to situations in which the transport coe
cient exhibits finite size effects, the time scale associa
with addition remains the same, while the time scale ass
ated with relaxation will be longer than that given in E
~12!, because Eq.~12! presumes that events and thus tra
port are not subject to limitations imposed by the syst
size. This in turn implies that the density will exceed t
value that would have been predicted by the determini
diffusion limit.

To test this numerically, we note that in the regime whe
diffusion holds we expect to obtain the scaling given in E
~10!, whereb is given by Eq.~13!. For fixedN, the diffusion
limit predicts the density will approach the singularity in
manner which scales exponentially with the driving ratedA :

rc2rN;
1

NdA /~f21! . ~29!

However, fordA sufficiently large, the diffusion limit fails.
This in turn implies that for fixedN and large enoughdA Eq.
~29! will underestimate the densityrN , and the true density
is expected to be closer to the singularity. This is consis
with our numerical results, illustrated for the exchan
model using full system densities in Fig. 8. For eachN when
dA is sufficiently large, the full system density gap (rc
2rN) systematically drops below the extrapolated scal
law ~29!, indicative of the fact that the mean density is abo
the predicted value based on the hydrodynamic diffus
limit. An even sharper drop off is obtained for largedA when
the middle quarter density distributions are used, and sim
results are obtained for thermal driving.

FIG. 8. Open system mean density as a function of driving r
dA for different system sizesN, offset by constant additive amoun
CN in order to distinguish the results for differentN. The dotted
lines represent extrapolations of the predicted results based o
hydrodynamic singular diffusion limit from smallerdA where it is
valid, to largerdA , where the diffusion limit is known to break
down. The fact that the solid curves, reflecting the gap~marked by
individual data points! between the open system densities and
critical point, fall below the extrapolated values~dotted lines! indi-
cates that the density exceeds the extrapolated value in agree
with our prediction.
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Finally, we note that a more detailed fit ofD(r) would
yield an estimate ofb for the crossover and saturation r
gimes. If the saturation value scales likeD(r);Nu, the time
scale associated with relaxation in Eq.~12! which would be
replaced by

tD;N22u ~30!

in the hard driving regime. Balancing this with the additio
ratetA yields the modified scaling law describing the rate
approach to the singularityb5d2dA1u22. However, be-
cause of the computational resources required to determ
the finite size scaling function~27! precisely, we are only
able to verify the more conservative prediction of a mo
rapid approach torc than would have been expected had t
deterministic diffusion limit applied.

VI. CONCLUSION

We have demonstrated a correspondence between a
tain class of open SOC models and closed systems w
display dynamical phase transitions. In this picture, the o
system events distribution is compared to a distribution
construct from an ensemble of closed systems of the s
finite size, with a distribution of densities which matches t
density fluctuations of the open system, and excluding s
tems which exceed their sample dependent depinning d
sity. We find that this correspondence always exists indep
dently of how the system is driven and the driving rate. A
byproduct, we have also obtained correlation length ex
nents on the open system which are consistent with the o
obtained previously on the closed systems, and suggeste
extended relationship between closed system relaxation
open system transport which applies to the open SOC mo
even in the hard driving regime.

Determining whether local equilibrium applies is an im
portant issue in many nonequilibrium systems. Our stud
suggest the validity of local equilibrium for the general cla
of BTW sandpile models, and the result is somewhat surp
ing given the fact that it persists even when the transitio
are long range and the density is fluctuating in the neighb
hood of a critical point. However, we expect that these s
tems may be special. In examples for which the closed, e
librium system develop site-site correlations, hard driving
the open system is likely to destroy the correlations. The f
that this class of models does not exhibit a diverging site-
correlation length atrc makes it a likely candidate for loca
equilibrium.

What about systems for which local equilibrium brea
down? In these cases the descriptions of the open and cl
systems must be fundamentally different. We already h
examples of this kind of behavior in SOC models, includi
those introduced and studied in Refs.@30,31#. Developing a
more systematic understanding of the differences betw
open and closed systems in these cases remains an impo
open problem.
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