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Avalanches, transport, and local equilibrium in self-organized criticality
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We obtain numerical evidence of local equilibrium in a family of sandpile models which exhibit self-
organized criticality(SOQ, by comparing them with closed systems which exhibit dynamical depinning
transitions. In particular, we construct a mapping between the open and closed system avalanche size distri-
butions which accounts for finite size fluctuations in the density and the critical point. Our results suggest a
generalization of the singular diffusion description of SOC which transcends the point where this description
was previously seen to break dow®1063-651X98)15811-1

PACS numbe(s): 64.60.Ht, 02.50-r, 05.40:+j, 05.60+w

I. INTRODUCTION tion that the open system no longer behaves similarly to the
closed system?

Local equilibrium is a useful property which leads to pre- In this paper we present evidence that the analogy be-
dictions for the nonequilibrium dynamics of open driven sys-tween closed and open systems can survive beyond the point
tems based on known aspects of their closed equilibriumwvhere the diffusion limit has failed. Thus, in the systems we
analogs[1,2]. A driven system exhibits local equilibrium consider, local equilibrium is found to be extremely robust as
when its local properties are indistinguishable from those oft survives in spite of systemwide fluctuations in the neigh-
an equilibrium system at the same density, in spite of the fadborhood of a thermodynamic singularity. Based on results
that the global behaviors may be quite different. It is notwe obtain for avalanche distributions in the closed and open
particularly unusual to find that local equilibrium applies in systems, we suggest an extended relationship between relax-
systems which exhibit a simple uniform flow. However, it is ation on the closed system and transport on the open system.
surprising to find equilibrium analogs for systems which ex-The key point is to compare the open driven system to an
hibits large scale emergent phenomena. appropriate ensemble of closed systems of the same finite

Certain driven threshold systems have proven to be suGize which lie below their sample dependent depinning den-
cessful testbeds for applying local equilibrium in casessjties, and are distributed in density according to the fluctua-
which exhibit complex phenomena over a broad range ofions of the open driven system. The singularities associated
scaled3-9]. In particular, analogies between self-organizedyith the critical density arise in the thermodynamic limit and
criticality (SOQ [10] and the more traditional criticality are avoided by focusing on a selected subset of finite sys-
which underlies dynamical phase transitioid, 12 have tems.
shown that local equilibrium can apply to systems in the The remainder of this paper is organized as follows. In
neighborhood of a critical point. This analogy underlies thesec. |1 we describe the open and closed systems that we have
singular diffusion description of transport in certain SOCstudied. In Sec. Ill we provide a brief review of depinning
systems introduced by Carlson and co-workegr3-17. In  transitions and singular diffusions, highlighting the features
this analysis, SOC models are studied firstlasedsystems, which are particularly relevant for finite systems. In Sec. IV
for which there is a well-defined conserved quantity. In thewe define a necessary test for local equilibrium in terms of a
hydrodynamic limit these systems are shown to satisfy detemapping between event size distributions on the open system
ministic diffusion equations in which the diffusion coeffi- and the Corresponding distributions on the closed system,
cient depends on the local value of the conserved densityand verify the mapping numerically in regimes where the
and diverges as the density approaches a critical point. Theingular diffusion limit holds and fails. In Sec. V we discuss
key success of the singular diffusion description is obtainedhe implications of local equilibrium for a more general re-
by applying it to theopensystems that exhibit SOC, where it |ationship between relaxation on the closed system and trans-
is found that with appropriate boundary conditions the diffu-port on the open System which extends past the point where
sion limit correctly predicts the rate at which the averagethe deterministic diffusion limit fails. In Sec. VI we conclude
density approaches the critical value as the system size dby discussing why we expect local equilibrium is so robust

verges. _ - ~inthe class of models we have considered.
More recently, it was shown that the diffusion description

can break down when the open system is driven sufficiently

hard [18]. In this scenario, as the driving ratg is in;reased, Il. DEFINITION OF THE MODELS
fluctuations cause the density of a macroscopic portion of the
system to exceed the critical value. Thipriori rules out the All of the models we consider can be thought of as varia-

possibility of applying the closed system thermodynamic sintions of the Bak, Tang, and WiesenfelTW) sandpile
gular diffusion limit to the open finite system, since the dif- model[10], in which there is a “mass’m; associated with
fusion coefficient in this limit is undefined for densities each site on a two-dimensiondlX N integer lattice. All the
greater than the critical density. Is this breakdown an indicamodels share the same toppling rule, and differ only in the
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boundary conditions and the manner in which avalanches are TABLE I. Closed systems: The thermal, exchange, and ramping
initiated. mechanisms described in Sec. 1l lead to different correlation length
exponentdEqg. (9)], and different diffusion singularitiefEq. (8)],

A. Toppling rule as reported in Ref§12,18,21 and Sec. V.

The sitei “topples” when m; exceeds a specified thresh- Driving Initiation Correlation Diffusion
old valuem.. As a resultm; is reduced by a fixed amount mechanism rule exponent singularity
which is subsequently redistributed among nearest neighbar
sitesm,,,. Without loss of generality we take,=4, and the 1 emal my—m;—4 v=0.5 ¢=17
following toppling rule. If Man— M+ 1

Exchange m,—m;,— 1 v=0.75 $=2.3
m;>me mj— m;+1
Ramping m— m+1 v=1

then

M=M= 4, Muy—Mpo 1. @y any of the neighboring sites is above threshold, the top-

pling rule Eq.(1) is iterated until all sites are stable at which

The process in Ed1) is iterated for each of them,, that ma
P q nn y goint another thermal kickEq. (2)] takes place.

have become unstable, until all of the sites on the lattice ar
below threshold. The cumulative result of an initial instabil-

ity is referred to as an avalanche, and the avalanche size is 2. Exchange driving

the number of sites that topple. The exchange driving mechanism was introduced by
Carlsonet al. [18] in the context of SOC systems, and nu-
B. Boundary conditions: open vs closed systems merical results were obtained both on open and closed sys-

_ i i _ tems. Exchange driving corresponds to selecting aisie
Sandpile models are typically defined with open boundaryanqom, removing one grain from that site, and depositing
conditions. The SOC steady state is reached when, on aveg;e grain on a randomly selected nearest neighbar of

age, addition of mass balances loss of mass at the boundary.
However, it is also possible to define closed versions of these
systems in which the boundary conditions are periodic. In
this case, when edge sites topple, one or more grains are mj—m;+1
transferred to an edge on the opposite side of the system. Fqr . . o

a closed system, the toppling rule preserves the density, a m; 1S apove threshold, the toppling rUlEg. (1)] is iterated
there is a critical density at which the system exhibits a therEmtll all sites are below threshold.
modynamically sharp phase transition between pinned and
sliding states. As several authors have previously noted
[12,19, there is a direct analogy between the closed system Ramping is the most commonly considered driving
and a space-time discretization of the Fukyama-Lee-Ric&echanism for both CDW's and SOC. The original BTW

model[20] for charge density wavesCDW's). sandpile model is driven this way by adding one grain at a
time to a randomly chosen site

mi—>mi_1 . . .
for a random neighboj of i. (3)

3. Ramping

C. Driving mechanisms
We consider three driving mechanisiesjuivalently, ava- m—m;+1. “)

lanche initiation rules We refer to the first two as stirfing ¢ 1o+ site is above threshold. the toppling riiqg. (1)] is
mechanisms, because locally they rearrange the grains but Brated until the system is cémpletely stable. Of the three
not result in a net change in the mass. In contrast, the thir

. : . - riving mechanisms, ramping is the only case in which mass
mechanism results in a net addition. The critical exponents. - y4ed to the system

characterizing the avalanche distributions are different in
each case. This leads to different exponents characterizing 4. Mixed cases

the singular diffusion coefficient. See Table I. ) o )
To obtain nontrivial results for thermal or exchange driv-

1. Thermal driving ing of open systems we must include some probability of

The thermal driving mechanism was introduced by Myersaddltlon(l'e" ramping to provide a net flux. We define the

. ; exponentd, (for dimension of additionso that on each ini-
f"‘r_“?' S_ethn@21] in the context of CDW's, anq corresponds to tiation step of the automaton the ramping rule is invoked
initiating avalanches by randomly toppling subthreshold,, - -
. : C L .—with probability
sites. That is, a siteon the lattice is chosen at random and is
made to topple according to the usual toppling rule even

though it is initially below threshold: Paai= N/N¢, ®)
while a stirring eventeither thermal or exchange toppling
m—m;—4, takes place with probability
2

Mp— Mot 1. Poir=1— (N9A/NY). (6)
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Therefore,dy=d=2 corresponds to pure ramping. Further-

more, by varyingl, we vary the flux, and it has been shown &(p)~ p=p)” 9)
previously that wheml, is sufficiently large the singular dif- ¢
fusion description breaks downs]. Here &p) measures how far an instability will typically

propagate before the system relaxes to a metastable state.
The singular diffusion coefficient can be evaluated nu-
merically on the closed system at fixed densityz p. by
monitoring the relaxation of a nonequilibrium density profile
Local equilibrium implies the existence of a relationship to the uniform equilibrium statésee Sec. Y. However, the
between relaxation on the closed system and transport on they success of this description comes fragsuminghat the
open system. In this section we highlight several establisheslame equation describes transport on the open system subject
features associated with transport and relaxation in the mode the boundary conditions associated with the external driv-
els defined in Sec. Il. Typically, both relaxation and transporing mechanism and the dissipation. For SOC systems the
are analyzed in the continuum limit in terms of deterministicfinite system size always remains relevant, and arises in con-
guantities—relaxation rates or diffusion coefficients. How-junction with Eq.(7) via the rescaled addition raf&q. (5)],
ever, the continuum limits are subtle in the models we conwhich is seen to increase with system si8]. Ultimately
sider because both relaxation and transport take place in thbis leads to the prediction that the steady state density ap-
neighborhood of a critical point. Here we give special attenroaches the singularity as the system size diverges.
tion to finite size effects. Accounting properly for the finite ~ The rate of convergence is obtained self consistently by
system size is at the heart of the mapping we construct iassuming the average densityis of the form
Sec. IV.
Previous work by Carlsoet al. [13] exploited the anal- 1
ogy between relaxation and transport in the development of Pc= P~ B (10
the singular diffusion description of SOC systems. They
stu_died the continuum Ii_mits of a clla_ss_ of .sandpile.mO(IjeIsrhe exponenb is determined by balancing the time scale
which were found to satisfy deterministic singular diffusion ggsociated with addition,
equations. These equations describe the evolution of a con-
served density, which is the continuum version of the dis-
crete mass variable;. As N—«, the automata map onto
deterministic diffusion equations which describe the net ef-
fect of many (infinite in the limit) avalanches, involving
many patrticles and many sites.
The singular diffusion equations are of the general form:

[ll. DIFFUSION LIMITS, DEPINNING TRANSITIONS,
AND LOCAL EQUILIBRIUM

1
TA™ NOANP (11)

with that for diffusive transport,

o~N27P%, (12)

ap Here 7, is the inverse rate at which the mass is increased by
E=V-[D(p)Vp], (7) an amount comparable to the distance from the singularity,
and p is the inverse relaxation rate of a density perturbation
in Eq. (7), obtained by reintroducing the explicit system size
where the diffusion coefficient depends on the local densitylependence of the spatial and temporal variables. A steady
and exhibits a singularity at a critical densjiy, state is obtained for the density at which these time scales are
equal, yielding the exponent

. 2—-d+d

P G ® b= 3

In the closed system the critical density is associated with as the self-consistent solution in E4.0). This implies that
depinning transition which has been studied in the context ofthe rate of convergence to the critical density with system
CDW'’s [11,12,22,23 When the system is prepared with size N increases as the addition rate expondptis in-
densityp=p. in the thermodynamic limit with probability 1, creased.

there will be an infinite avalanche which propagates forever. Because the density approaches a singularitiNase,

The diffusion coefficient is only defined fgs<p. (the  application of the continuum description in E) to an
microscopic time scale which enters into the continuum limitopen driven system can fail. In previous work on applying
is the avalanche initiation rate, while in the depinned statesingular diffusions to SOC models, the breakdown of the
this time scale is undefined since an infinite avalanche begindiffusion limit was identified with a particular value of the
in the initial state and never stgpsA diverging diffusion  driving rate exponentl, [Egs.(5) and(6)] at which fluctua-
coefficient reflects the fact that typical transition lengthstions associated with the finite size of the open system leads
(event sizep are diverging as the density approaches thehe density to exceed the critical density in macroscopic do-
critical value p.. Indeed, numerical studies of event size mains.
distributions on closed systerh$2,18,21,24 reveal a char- We characterize fluctuations in the open system density
acteristic length scale which diverges at the transition distribution by the exponerd, such that
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o=[(p®)—(p)*]"*~N"2. (14 BO | e

(a) N=64 Fp.%)
d,=1.0

In the case of the BTW model, the fluctuations obey the
central limit theoren(consistent with the fact that the mass-
mass correlation length does not divergepatin this sys-
tem), so thata=d/2. Density fluctuations exceed the critical
point whena<b, so that the thermodynamic diffusion limit
is no longer self-consistent in that regime.

In this paper we extend the analogy between open and
closed systems by comparing the open system to a finite
closed system of the same size, rather than using results ob-
tained for a continuum limit on the closed system as was
done before. The key point is to account for both the density
fluctuations of the finite open system and the critical point 2.95 3.00 305 3.10 3.15
fluctuations of the ensemble of finite closed syst¢i®s524. P
If both kinds of fluctuations are small compared to the dis-
tance between the mean open system density and the ther-
modynamic singularity, then predictions based on singular
diffusion in theN—co limit survive. In this case, it is always
possible to find a finite system which is large enough that the
effects due to fluctuations can be made smaller than a speci-
fied tolerance.

Alternately, to describe systems which approach the criti-
cal density faster than the fluctuations decay, it is necessary
to account for the possibility of overlap between density
fluctuations on the open systeftharacterized by the expo-
nenta as described aboyand the critical point fluctuations
of the ensemble of closed systems. An ensemble of closed
systemg(involving different realizations of the randomngss
is characterized by a distribution of critical densitj€s The
width of this distribution is characterized by a finite size
scaling exponenit25] FIG. 1. Distributions of the open system densit@%(p), and

closed system depinning threshold densiﬁéﬁ{pi), for a 64x64
. 62 S\ 291/2 s exchange model. Ifa), d4y=1.0, and fluctuations are small com-
o' =[{(p)?) —(pH]"~N FS. (19 pared to the separation between the mean density and the mean
depinning threshold. In this case we have plotted the middle quarter
In the systems we consider these fluctuations obey the cerensity distribution. Inb), d,=2.0, and the mean density is much
tral limit theoremwes=d/2 [11]. This is the same scaling as closer to the mean depinning threshold so that the distributions
that obtained for the open system density fluctuations, i.egQverlap. Both middle quarter and full system densities distributions
1/lves=a, so that as the system size divergés—«), the  are included for comparison.
fluctuations in both the open system density and closed sys-
tem critical point converge to zero at the same rate, whictverges to the critical point, and thus the singular diffusion
preserves the criterion<<a for which fluctuations are irrel- description applies. In Fig.(l), we plot the density for both
evant and the thermodynamic singular diffusion limit appliesthe middle quarter of the system as well as the full system for
to the open system. In contrast, foea fluctuations become the BTW model withd,=2.0. In this regimeb>a= 1/vgg,
dominant. and the distributions already overlap fd= 64, signaling the

The two different scenarios are illustrated in Fig. 1, wherebreakdown of the deterministic diffusion limit. The middle
we plot various distributions for a 6464 exchange model. quarter density distribution overlaps more strongly with the
The curve on the right side of each p&a and (b) is the distribution of critical points than the corresponding distribu-
critical point distribution on the closed systeR}(pS). This  tion for the whole system. This occurs because the mean of
is measured by ramping from the same set of initial condithe middle quarter distribution is slightly highét does not
tions(e.g.,m;=0, Vi) and recording the value of the density include the low density boundary laygrsand the middle
at which an infinite avalanché.e., a sliding stateoccurs.  quarter corresponds to a smaller subsystem with an intrinsi-
On the left side of Fig. (B) we plot the middle quarter open cally greater variancg26].
system density distributioch’}'(p) for dy=1.0 with ex-
change stirring. Results based on density estimates made
from the middle quarter of the system sometimes yield better
results than those obtained using the density averaged over In this section we propose a mapping between the open
the full system, because restricting measurements to thand closed systems which extends beyond the point where
middle quarter avoids edge effects. In this regiotea, so  fluctuations destroy the deterministic diffusion limit. We dis-
that fluctuations decay more rapidly than the density coneuss our map in the context of the avalanche distributions.
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However, the analogy we make is easily generalized and has +o [ s

also been tested for other quantiti{@¥]. The mapping is a Pc’j‘(n)~f fpc PN(n,p)
necessary, but not sufficient, condition to verify local equi- e
librium. A more stringent test would involve a detailed check
of all correlation functions. However, we are ultimately most

GN )FN S)
M dp dp?.

(19

The left hand side is simply the open system event size dis-
h | 1 closed q . he[ﬂbution, while the right hand side represents the distribution
system has an analogy In closed system dynamics, rathgle .onsiryct from an ensemble of closed systems. The inner

than in d%talls of the r|n|crcr)]scodp|c _sbtat_es. A chggk Off t.hlelntegral performs an average over {ispatially varying den-
mapping etween avalanche distributions provides | alrysity of the open system for densities below the critical point
convincing evidence that the transport properties will b

cimilar ®and the outer integral averages over the fluctuating critical

point. Herel is defined byl =f’i?wGQ‘(p’)dp’, which nor-
malizes the open system density distribution subject to the
- ] T restrictionp<pZ. This normalization factor is needed since

A specific scaling form of the avalanche distribution onthe two probability functions may overlap significantly. We
the clpsed system ha; been conjectured and ygrified Uume\"htegrate the density only up to the cutoffp?, because the
cally in previous studie$12,18,24. Near the critical point  qnen houndary conditions prevent infinite events from occur-
we write ring on the open system. Thus they must be excluded from

the closed system ensemble. Finally, we note that this map
N 1 g does not require the distributions to be of the specific forms
Pc(n,p)~ 5 9(n/&%), (16 given in Eqs.(16—(18), and is easily generalized to other
measurable quantities by substituting the distributions of in-
terest forPY(p,n) andPY(p) in Eq. (19).

Finally, we consider Eq(19) in the N—co limit for the
specific distributions given in Eq&l6)—(18). While Eq.(19)
does not depend on the diffusion limit, there are two differ-
ent regimes which coincide with the conditions for which the
limit holds and fails. In the simplest case the density fluctua-

The steady state density of the open system exhibits Cergi_ons do not overlap the critical point fluctuations. Therefore,
tral limit fluctuations about a mean densjpy which also  Without loss of generality, we replagg by = in the upper

scales withN. We write the probability of the open system limit of the integration so that a diverges, the Gaussians
having a density as converge tod functions, resulting in the prediction

A. Open system compared to an ensemble of closed systems

where P’C\'(n,p) is the equilibrium probability of an event
involving n sites at density on a system of sizhl, andg(x)

is a scaling function. The subscriptc™ denotes a closed
system. This relation defines the exponaenthe correlation
length is given by Eq(9), and provides thétypically expo-
nentia) cutoff in the event size distribution.

N()— & o/ £
PO(n) na g(nlg ) (a>b)1 (20)

G (p)= exf —(p—p)*/207]. 17

1
Ve2mo .
where ¢~ (p.—p)~". Note that the predicted open system

Here the subscript 8” denotes open system and the super-€Vent size distribution has an implicit system size depen-
scriptN reminds us of the implicit system size dependence oflénce since scales withN according to Eq(10). This de-
the mearp and the variance. A similar expression charac- scribes the case when diffusion holds, and our mapping sim-

terizes the Gaussian distribution of critical densitigson Pl states that the event size distributions of the open and
the finite closed system closed systems should have the same form having identical

exponentsy and . On the other hand, when there is an
overlap between the open system density fluctuations and
1 closed system critical point fluctuations, the hydrodynamic
F(pd)= - exd — (pe—pc)?20'?], (18  singular diffusion limit breaks down. Nonetheless, we can
N2mo carry out the integrals by elementary methods to obtain

whereo’ ~N~YFs with veg=2/d. 1
We now construct the mapping for the event size distri- Pl(n)~= (a<b). (21)
bution on the open systey(n) in terms of PY(p,n). The n

key point is to consider the open system as an ensemble ?rf1 this case the maximum event saturates at the system size
closed systems which are weighted according to their densl- y '

ties and their finite size, and restricted to be the subset o?nd the predicted power law IS only I_|m|ted by the finite size
systems below their sample dependent critical points. To thigf the system. The exponentis again expected to be the
end, we integrate the closed system event size distributior™e ON the open and closed systems.

P’C\‘(pn) over the distribution of densities of the open system _

Gh(p), and perform an ensemble average by integrating B. Numerical results

over the distribution of threshold densitiég(pi) for closed We numerically verify Eq(19), in which the open SOC
systems of the same finite size: system is compared to an ensemble of closed finite systems
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TABLE II. Open vs closed: The table summarizes the results obtained from finite size scaling collapses in Figs. 2-5. In each case, the
avalanche distributions obtained for the open driven system collapse with the same exponents, like those used for the ensemble of closed
finite systems defined according to the mapping in @§). Thus the analogy between closed and open systems persists in thesoft (
=1.0), intermediated,=1.5), and hardd,=2.0) driving regimes.

Driving Open system Avalanche Correlation Diffusion Open/closed
mechanism driving rate exponent exponent applies exponents agree
Thermal da=15 a=1.16 v=0.49 no(asN— ) yes
Exchange da=1 a=141 v=0.76 yes yes
Exchange da=15 a=1.28 v=0.79 no(asN— ) yes
Ramping da=2 a=1.18 saturates no yes

for the class of BTW sandpile models introduced in Sec. Il.that in the marginal case for the system sizes we can con-
We consider the open system as a function of drivingdate sider, the distributions do not overlap, and many of our nu-
and system siz8\l. In each case we initiate many avalanchesmerical results are still consistent with the singular diffusion
in the statistically stationary state to determine the avalanchémit. Finally, we considerard driving which is exhibited
distribution function PY(n) and the density distribution by the standard BTW model with pure ramping. In this re-
function Gy(p). Then for each closed system of siXewe  gimeb>a, and a significant overlap of density and critical
begin withp= p,i;=0, and add one grain at a time. After the Point fluctuations occurs even for small systems so that a
grain is added, the system is stirred at fixed density for a longure power law in the event size distribution is observed.
time as we accumulate statistics ®}(p,n). After a large The results are presented in summary form in Table II.
number of events have taken place another grain is added, N
and contributions td}(p,n) for the next density increment 1. Soft driving: d,=1.0
are obtained. If at any point an infinite avalanche is encoun- We first consider the open exchange model witk
tered, the data for that specific density are discarded and the 1.0, where fluctuations are small compared to the distance
density is reset t@y,, for another sweep. In this manner we from the singularity. A finite size scaling collapse of the
approximate the process of integrating densities up to th@valanche size distributions is shown in Figa2for N
critical densityp?. Finally, we combine the closed system =16, 32, 64, and 128. We compare this collapse with the one
events distributions obtained for different densities andobtained from closed systems of the same sizes, where each
weight them according to the observed open system distriblelosed system distribution is constructed according to Eg.
tion of densitiesGE(p) to obtain an estimate for the right (19) from an ensemble of closed exchange models weighted
hand side of Eq(19). by the distribution of densities obtained for the middle quar-

We compare the distribution constructed from the en-er of the open system. Middle quarter densities are chosen in
semble of closed systems with the open system events disrder to avoid the edge effects associated with boundary lay-
tribution in terms of the scaling exponents extracted from zers, as discussed in R¢f.3]. The result for the ensemble of
finite size scaling collapse. Since the event size rescaled closed systems is shown in Fig(b?, where an excellent
by the characteristic sizé®~ (p.—p) "~NP"4, we may collapse is obtained for the same set of exponents as in Fig.
replace Eq(20) with Pg‘(n)~(1/n“)g(n/Nde). Then defin-  2(a), indicating that the mapping between the open and
ing z=n/NP"¢, the expected scaling takes the form closed systems applies.

The ratio of the exponents yielding the best collapse pro-
1 duce the estimate=1.41. Computing from our numerical
PN(N)N*P"d~ — §(z2). (220  data on middle quarter densities yields-0.73[in reason-

z ably good agreement with the value predicted by singular
diffusions in Eqg.(13)], and from this we obtainn=0.76
which compares well with the value efobtained previously
ﬁ{)r the closed system in Rdf18].

For a given driving rated,) and a stirring mechanisither-
mal or exchange we obtain the distributions for different
system sizes and perform a finite size collapse. The best
x-axis scaling exponent gives an estimatebefd, and the
best fit y-axis exponent gives an estimate fabvd. The
ratio of the two exponents yields, and v can be calculated Next we consider the open exchange model with
given the estimate df which can be obtained by computing d,=1.5. In Fig. 3a) we show a finite size scaling collapse of
the mean values of the density distributi@d$(p) as a func-  the open system avalanche distributions for system sizes up
tion of N. to 512x512. Figure Bo) illustrates that the analogous closed
We consider three different regimeSoft driving de-  system result§based again on Eq19), with the middle
scribes the case in which>b, and the deterministic singu- quarter density distribution from the open systecollapse
lar diffusion applies asN—o~. Intermediate drivingde- well with the same exponents. In this case, we have included
scribes the case in whidhis larger but comparable @ and  only the largest system sizéd=128, 256, and 512, because
the deterministic diffusion limit is expected to be invalid in the smaller system sizes deviated from this collapse system-
the N—oo limit. We introduce this as a separate case fromatically with decreasing size. From this we obtair 1.28.
the hard driving regime discussed below, because we fin€omputing the value db from the open system densities we

2. Intermediate driving: y=1.5
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tions GN(p) andF}(p2) do not overlap for the system sizes
we can consider.
As shown earlier, the failure of the diffusion limit coin-
. Lo : cides with the emergence of pure power laws in the events
di \tNe haye alT:(.) cons(;;le_r”ed tthsgrma:lf}sh;_nrz{g n the IntT’Trme'olistribution [Eg. (2D]. In other words, we expect that
late regime. Figure fustrates the mnite sizé scaliing ~N, i.e., the characteristic length scale should exhibit a fi-

collapse of ivalanche (iistributions on the open thermal sySsise gj7e crossover and saturate at the system size. In general
tem withd,=1.5 andN =16, 32, 64, 128, 256, and 512. In ¢ correlation length has a finite size scaling form

Fig. 4b) we show that the exponents used for the collapse
also collapse the data obtained from the closed system en-
sembles. In this case we obtain=1.16. The open system 1 H(N(pe—p)*) 23)
middle quarter mean densities yield the estimatel.57, (pc—p)” Pe=P) )
which in turn givesy=0.49, which is consistent with value
of »=0.5 previously obtained on the closed systeth). The scaling functiorH(z) approaches a constant fee1,

Thus we have established a correspondence between thimce in the thermodynamic limit the correlation length is
open and closed systems fog=1.5, and obtained correla- independent of the system size. Alternatety(,z)~z for z
tion length exponents which are consistent with previous <1 so that when g.—p) ~”~N the correlation length be-
studies on the closed systems. However, there remains @mes finite size limitedg~N. One cannot expect to extract
subtle discrepancy between the data we have obtained, atide exponeny in this regime. As we shall see, this saturation
the predictions we have made based on the dominance @ observed wherl,=2.0. However, wherd,=1.5, even
fluctuations that we anticipate for large enougtwith this  though the singular diffusion limit is asymptotically expected
value ofd,. Since¢=2.3 for exchange stirrin§gl8], fluc- to fail, for the finite systems considered the correlation
tuations should dominate whaty=1.3. We have foundp  length has not saturated. Instead, our data collapse indicates
= 1.7 for thermal stirringsee Sec. Y, so fluctuations should that over this range of system sizes the characteristic lengths
dominate wherd,=0.7 in that case. However, the distribu- are decreasing slightly relative to the system sgzeN%°for

obtain b=1.135, in good agreement with E@l3). This
yields »=0.79, which is again consistent with the closed
system results.

g,\,
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FIG. 4. Finite size scaling collapse of the avalanche distribu- 10% g
tions for thermal stirring wittd,=1.5. The same scaling exponents 10* = = () ENSEMBLE CLOSED BTW -4
give a good collapse for botfa) the open system anih) the en- 10 _ P, _
semble of closed systems. From this fit we obtain 1.16 andv s
=0.49. o 10° -
~— E 3
n, 10" - + N=16 —
ieri ; ; - E ® N=32 3
exchange stirring in Fig. 3, ang~N%78 for thermal stirring s 100 x nees =
in Fig. 4 (the exponent describing the scaling&With N is o o-tE T E
obtained by dividing the exponent for theaxis data col- = - *
lapse byd=2). We expect that this discrepancy results from 1077 ¢~ %
the fact that we are not yet in the asymptotic regime for this 107 = #
drIVII‘]g rate. EXtI‘apolatlonS Of hlgher Order flts Of the nu- 10*4 C i ||\|||i L IHIII| L1 IIIHI| ) mml L ||||):|(\| L
merical results suggest that very large system sizes would be 107 107 107 107 107" 10° 10!
required to achieve the predicted asymptotic resig]. H/Nzo

This discrepancy does not invalidate our test for local equi-
librium. While the values ofv obtained from these fits are FIG. 5. Finite size scaling collapse of avalanche distributions for
consistent with closed system results, we suspect they mdie standard BTW model, i.ed,=2.0. The same exponents give a

not represent asymptotic results. good collapse foka) the open system(p) the ensemble of closed
systems weighted according to the middle quarter density distribu-

tion, and(c) the ensemble of closed systems weighted according to
the full system density distribution. We obtain=1.175 from this
Finally we considerd,=2.0, where the system sustains fit, and the saturation valug~N associated with a power law dis-
the maximum flux. The exchange and thermal models are&ibution.
indistinguishable in this case. In Fig(d we plot a finite size
scaling collapse of the open system avalanche distributionBig. 5b) for the density distribution obtained from the
which are described by pure power laws with sharp cutoffs amiddle quarter of the open system. While the data do col-
the system size. Theaxis scaling exponent id=2.0, indi-  lapse with the same exponents here as in Fig), Sve obtain
cating thaté~N, as expected in this regime. better agreement for the scaling function when the integral in
We construct the analogous distribution for the ensemblé=g. (19) is based on the full system density, as shown in Fig.
of closed systems initiating avalanches by ramping only. Thé(c). The primary difference is in the tail of the distribution.
result of a finite size scaling collapse in this case is shown imThe distribution constructed using the middle quarter densi-

3. Hard driving: dy=2.0
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ties exhibits excess large events which we do not observe on. When diffusion fails, the fluctuations are of the same
the open system. This occurs because the mean of the middbeder as the gap between the density of the finite system and
quarter density distribution is essentially pinnedpgteven the singularity, so that the fluctuations remain significant for
for relatively small systems. In addition, the middle quarterall system sizes. It is in this sense that the system is intrin-
density distribution is based on a smaller subsystem size thasically noisy.

the distribution obtained numerically for the closBidk N In order to motivate our description for the regime in
system, so the variance is larger, which adds more weight tevhich the hydrodynamic limit fails, it is useful to note that in
the tail. For these reasons, in spite of the inclusion of thesome case®(p) has also been expressed in terms of the
boundary layergwhich are less significant because they arecharacteristic length scalép) [Eq. (9)] associated with the
sharper for hard driving the full system density distribution cutoff in the event size distributiof29]:

gives a better fit.

Dividing they-axis scaling exponent by theaxis scaling 1 &
exponent, we obtain the value af=1.175, which is consis- Dp)~——%~—- (29
tent with that obtained from the CDW model by Narayan and (pe=p)® 7

Middleton [28]. We observe thab=1.33, obtained from \ynen time is defined conventionally, e.g., if individual top-
whole system densities which combined widk-2, yields  ,jings occurred in a fixed, finite period of time, then we
v=0.75, consistent with the value reported by Tang and Baky,q |4 expect the characteristic time scal® exhibit critical

[23] for the same system, but inconsistent with the value slowing down in the neighborhood of the.. However, in

= 1.0 reported by Narayan and Middleton for the closed SySg r case the clock is set by the stirring and/or addition rates

tem [12]. For the open system the characteristic length  aiher than the local toppling rule, and individual events are
saturates when the exponent for texis data collapse is yiewed as instantaneous regardless of their size. Conse-

equal to 2.0, which is associated with the_finitg size Iimitedquenﬂy, the time scaleis associated with the rate of change

case£~N. Therefore, this method of estimatingbreaks o the pinned configurations, which will also depend @n

down on the open system. and is expected tdecreasavhen approaching the singular-
ity, since more sites change state as the typical avalanche

V. CLOSED SYSTEM RELAXATION AND OPEN SYSTEM size ¢ increases. Borrowing the conventional notation from
TRANSPORT critical phenomena, we have

_Given the fact that the analogy between event size distri- 7~& with z<0, (25)
butions on the open and closed systems persists beyond the
point where our previous hydrodynamic description fails, itgg that
is natural to ask whether a relationship between closed sys-
tem relaxation and open system transport extends to this re-
gime. The existence of a mapping between open and closed
system event size distributions does aopriori imply that
this will be the case, particularly since relaxation involves
initializing the system in a nonequilibrium state.

Below, we suggest a generalization of the singular diffu-
sion description which incorporates a finite size scalin
crossover when the hydrodynamic limit breaks down. In thi
regime transport and relaxation are intrinsically noisy an
finite size limited. Our results remain somewhat speculativ%
due to computational limitations which prevent us from con-
sidering asymptotically large system sizes. Nonetheless we
present numerical results for ensemble averages which are 1
consistent with this pi Dnip)~———=3

picture. (pc—p)

The singular diffusion limit is described by E(), where
the diffusion coefficient is given by Ed8). The specific When the system size is large compared to the event size
scaling used to obtain a precise and deterministic continuurautoff, the argumenx of the scaling functiork(x) is large.
limit technically involves taking the system size to infinity In this limit we expectK(x) to approach a constant
on a closed system, as described in Sec. Ill. For any finit@symptotic value, so that the hydrodynamic result is retained.
system the evolution is stochastic, to first approximationHowever, like, the collective transport and relaxation dy-
governed by a fluctuation equation described in R&8]  namics which are characterized in termsnj(p) are also
which represents the leading order finite size correction t@xpected to saturate at system size dependent average values
the deterministic diffusion limit. whenx=<1. Thus we expedD\(p)~N’, where scaling sug-

The subtlety comes in applying the diffusion limit to open gestsé= ¢/v=2—2z. In this caseDy(p) represents an en-
systems, where it predicts that the density approaches tteemble average coefficient. For a specific realization trans-
singularity as the system size diverges. When hydrodynanport and relaxation remain intrinsically noisy and the critical
ics holds, the fluctuations still decrease rapidly compared tdensityp. in Eq. (27) is sample dependent.
the rate at which the density approaches the singularity, so To verify this numerically, we apply the same algorithm
that the system becomes more and more deterministid as used previously to determine the diffusion singularity, but

D(p)~&?77. (26)

In Sec. IV we saw that the regime where diffusion fails is
associated with a finite size scaling crossover as described by
Eqg. (23), such that for large enough densities on a given
system size the largest events are limited not by the thermo-
gdynamic cutoff but rather by the system sige N. The fact

hat the diffusion coefficient can be expressed in termé§, of
nd ¢ exhibits finite size scaling, suggests a finite size scaling
escription of the diffusion coefficient:

7 K(N(pc—p)"). 27
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FIG. 6. Closed system relaxation rates are obtained numerically S T I B RN
from an ensemble of systems for which the average initial state 6 4 5 0
corresponds to a low amplitude step function in the density, as In[p.—p]
illustrated schematically here. In order to obtain the leading order ¢
linear results, the amplitudeis taken to be small compared to the |G 7. Relaxation rate as a function of density and system size
distance from the singularitypt—p), and finite size effects be- for closed finite systems with exchange driving. Asipproaches
come important whergy(p—€) becomes comparable ®. The  , ~3 125 the rate is initially proportional to the singular diffusion
step function describes a cross section of the density variation alo%efﬁciem[Eq_ (8)] with ¢~2.3. However, as the characteristic
one axis of the two-dimensional lattice. The other direction is Uni-gyent sizet becomes comparable to the system size, the relaxation
form. rate saturates in a manner which scales with system size, consistent

with Eq. (27).
extend our analysis to the regime where the system size be-
comes relevant. In particular, we monitor the time depenyejevant, so ensemble averages argriori necessary in or-
dence of the relaxation of small amplitude perturbations. Weyer 1o identify the mean rate of decay. As for the closed
consider an ensemble of closed systems initialized so that thg stem event size distributions, here we restrict the ensemble
average state is represented schematically by Fig. 6, whicl the subset of systems which remain below their sample
depicts the hydrodynamic density as a step function. Eaclependent critical points throughout the relaxation process.
element of the ensemble is prepared in a random initial state The results are presented in Fig. 7 for the exchange
in which half of the system is at densipy- €, and the other  mogel. Similar results were obtained for the thermal model.
half is at densitypo+e. We then equilibrate each half sepa- our measurements were made for an initial density offset
rately at these offset densities, and combine the system angresponding to 10% of the difference between the average
monitor the_ampht_ude!\(t) of the offset for that sample as a density p and the singularityp.~3.125. We find that the
function of time. Finally, we perform an ensemble average Ofjecay remains roughly exponential, so that we can still esti-
(A(t)) to obtain the linear relaxation rate. mate the ensemble average rate of decay using a least

In the hydrodynamic case, the singular diffusion exponentqyares fit to the form given in E428). As illustrated, it
¢ can be determined using this method. When the initialexhibits a crossover at values of the density which increase
offset is sufficiently small, we linearize Eq7) about the  wjth increasing system size, consistent with the finite size

uniform density state(x)=p to obtain scaling form proposed in Eq27). For smaller densities the
diffusion coefficient is(roughly) independent of system size
A(t)~A(0)exp(—A2D(p)t), (29) and of the expected foriEg. (8)]. However, as the density

approaches the singularity, the relaxation rate saturates at

where \ is the eigenvalue of théprimary) Fourier mode values and densities which increase with system size.
which we monitor. In order for the hydrodynamic limit to  The approximately equal spacing of the saturation value
apply, it is necessary for the largest events associated withn the logarithmic scale for the three smaller system sizes is
the higher initial offset density to be small compared with consistent with finite size limited form @ (p) ~N?, though
half the total system size. To stay within this limit, yet get with so few data points it would be unreasonable to evaluate
close enough to the singularity to see the asymptotic scaling numerically. At higher densities the events become in-
of D(p), is numerically time consuming. While in principal creasingly large and time consuming, and an increasing num-
it should be possible to omit the ensemble average for theer of realizations within the ensemble must be discarded
hydrodynamic case, in practice we cannot consider systentsecause they exceed thésample dependentritical points.
which are large enough to be self-averaging. Instead we avFhis prevents us from exploring densities which were suffi-
erage over many initial states, as described above. Using thidently large to obtain saturation in the relaxation rate for
method we have obtained the diffusion exponefits2.3 for  larger systems.
the exchange model angl=1.7 for the thermal model as What are the implications for transport on the open sys-
reported in Table I. tem? As discussed in Sec. lll, when hydrodynamics holds the

To estimate the relaxation rate when the deterministic difsingular diffusion equation predicts the rate at which the den-
fusion description fails, we extend our measurements on ersity approaches the singular point as the system size diverges
sembles of closed, finite systems to higher densities, suchaccording to Eq(10), where the exponerit in Eq. (13) is
that the largest events span an appreciable fraction of thebtained by balancing the time scalg associated with the
system. In this regime, critical point fluctuations are alsoaddition of new particlefEqg. (11)], and the time scale asso-
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Finally, we note that a more detailed fit 6f(p) would

1 yield an estimate ob for the crossover and saturation re-
gimes. If the saturation value scales liR¢p) ~ N, the time
scale associated with relaxation in E@2) which would be
_] replaced by

Tp~N?"* (30

_] in the hard driving regime. Balancing this with the addition
. rate 7, yields the modified scaling law describing the rate of
1 approach to the singularity=d—d,+ 6—2. However, be-
cause of the computational resources required to determine
~10 . Lo the finite size scaling functiof27) precisely, we are only
0 1 2 able to verify the more conservative prediction of a more
d, rapid approach te. than would have been expected had the
deterministic diffusion limit applied.
FIG. 8. Open system mean density as a function of driving rate
d, for different system sizeN, offset by constant additive amounts VI. CONCLUSION
Cy in order to distinguish the results for differeNt The dotted
lines represent extrapolations of the predicted results based on the We have demonstrated a correspondence between a cer-
hydrodynamic singular diffusion limit from smallet, where itis  tain class of open SOC models and closed systems which
valid, to largerd,, where the diffusion limit is known to break display dynamical phase transitions. In this picture, the open
down. The fact that the solid curves, reflecting the gajprked by  system events distribution is compared to a distribution we
individual data pointsbetween the open system densities and theconstruct from an ensemble of closed systems of the same

critical point, fall below the extrapolated valuéotted linegindi-  finite size, with a distribution of densities which matches the
cates that the density exceeds the extrapolated value in agreemefénsity fluctuations of the open system, and excluding sys-
with our prediction. tems which exceed their sample dependent depinning den-

sity. We find that this correspondence always exists indepen-
ciated with diffusive relaxatiornp [Eq. (12)]. As we gener- dently of how the system is driven and the driving rate. As a
alize our results to situations in which the transport coeffi-byproduct, we have also obtained correlation length expo-
cient exhibits finite size effects, the time scale associatedents on the open system which are consistent with the ones
with addition remains the same, while the time scale associebtained previously on the closed systems, and suggested an
ated with relaxation will be longer than that given in Eg. extended relationship between closed system relaxation and
(12), because Eq(12) presumes that events and thus trans-open system transport which applies to the open SOC models
port are not subject to limitations imposed by the systeneven in the hard driving regime.
size. This in turn implies that the density will exceed the Determining whether local equilibrium applies is an im-
value that would have been predicted by the deterministiportant issue in many nonequilibrium systems. Our studies
diffusion limit. suggest the validity of local equilibrium for the general class

To test this numerically, we note that in the regime whereof BTW sandpile models, and the result is somewhat surpris-

diffusion holds we expect to obtain the scaling given in Eq.ing given the fact that it persists even when the transitions
(10), whereb is given by Eq.(13). For fixedN, the diffusion  are long range and the density is fluctuating in the neighbor-
limit predicts the density will approach the singularity in a hood of a critical point. However, we expect that these sys-
manner which scales exponentially with the driving rdfe ~ tems may be special. In examples for which the closed, equi-

librium system develop site-site correlations, hard driving on

the open system is likely to destroy the correlations. The fact

_ 1 29 that this class of models does not exhibit a diverging site-site
Pc™ PN NdaT(6-D) - (29 correlation length ap. makes it a likely candidate for local
equilibrium.

What about systems for which local equilibrium breaks
down? In these cases the descriptions of the open and closed
systems must be fundamentally different. We already have

xamples of this kind of behavior in SOC models, including

ose introduced and studied in R€f30,31. Developing a
more systematic understanding of the differences between

merI ”3"?9. full system densities in Fig. 8. For g&tbvhen open and closed systems in these cases remains an important
d, is sufficiently large, the full system density gap.( open problem.

—pn) Systematically drops below the extrapolated scaling
law (29), indicative of the fact that the mean density is above
the predicted value based on the hydrodynamic diffusion

limit. An even sharper drop off is obtained for lardg when This work was supported by the David and Lucile Pack-
the middle quarter density distributions are used, and similaard Foundation and NSF Grant Nos. DMR-9212396 and
results are obtained for thermal driving. PHY94-07194.

However, ford, sufficiently large, the diffusion limit fails.
This in turn implies that for fixedN and large enougd, Eq.
(29) will underestimate the densifyy, and the true density
is expected to be closer to the singularity. This is consiste
with our numerical results, illustrated for the exchange
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